CpG island hypermethylation-associated silencing of small nucleolar RNAs in human cancer
نویسندگان
چکیده
Much effort in cancer research has focused on the tiny part of our genome that codes for mRNA. However, it has recently been recognized that microRNAs also contribute decisively to tumorigenesis. Studies have also shown that epigenetic silencing by CpG island hypermethylation of microRNAs with tumor suppressor activities is a common feature of human cancer. The importance of other classes of non-coding RNAs, such as long intergenic ncRNAs (lincRNAs) and transcribed ultraconserved regions (T-UCRs) as altered elements in neoplasia, is also gaining recognition. Thus, we wondered whether there were other ncRNAs undergoing CpG island hypermethylation-associated inactivation in cancer cells. We focused on the small nucleolar RNAs (snoRNAs), a subset of ncRNA with a wide variety of cellular functions, such as chemical modification of RNA, pre-RNA processing and control of alternative splicing. By data mining snoRNA databases and the scientific literature, we selected 49 snoRNAs that had a CpG island within ≤ 2 Kb or that were processed from a host gene with a 5'-CpG island. Bisulfite genomic sequencing of multiple clones in normal colon mucosa and the colorectal cancer cell line HCT-116 showed that 46 snoRNAs were equally methylated in the two samples: completely unmethylated (n = 26) or fully methylated (n = 20). Most interestingly, the host gene-associated 5'-CpG islands of the snoRNAs SNORD123, U70C and ACA59B were hypermethylated in the cancer cells but not in the corresponding normal tissue. CpG island hypermethylation was associated with the transcriptional silencing of the respective snoRNAs. Results of a DNA methylation microarray platform in a comprehensive collection of normal tissues, cancer cell lines and primary malignancies demonstrated that the observed hypermethylation of snoRNAs was a common feature of various tumor types, particularly in leukemias. Overall, our findings indicate the existence of a new subclass of ncRNAs, snoRNAs, that are targeted by epigenetic inactivation in human cancer.
منابع مشابه
Epigenetic loss of the PIWI/piRNA machinery in human testicular tumorigenesis
Although most cancer research has focused in mRNA, non-coding RNAs are also an essential player in tumorigenesis. In addition to the well-recognized microRNAs, recent studies have also shown that epigenetic silencing by CpG island hypermethylation of other classes of non-coding RNAs, such as transcribed ultraconserved regions (T-UCRs) or small nucleolar RNAs (snoRNAs), also occur in human neopl...
متن کاملStudy of promoter CpG island hypermethylation of cyclindependent kinase inhibitor gene p21waf1/cip1 on some breast carcinoma cell lines
The p21 belongs to the CIP/KIP family of CDK inhibitors involved in cell cycle arrest at specific stages of the cell cycle progression. DNA methylation is the best studied epigenetic mark that have been evidently associated to chromatin condensation, and repression of gene transcription. The CpG island hypermethylation in promoter region of certain genes occurs in cancer cells and affects tumor...
متن کاملTwo Steps Methylation Specific PCR for Assessment of APC Promoter Methylation in Gastric Adenocarcinoma
Gastric Cancer (GC) is the second most common cancer in the world and a leading cause of cancer-related mortality. Methylation of promoter CpG islands (CGIs) belonging to tumor suppressor genes causes transcriptional silencing of their corresponding genes leading to carcinogenesis and other disorders. Adenomatous Polyposis Coli (APC) a tumor suppressor gene is inactivated by methylation of prom...
متن کاملTranscriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells.
It is well established that DNA hypermethylation of tumor suppressor and tumor-related genes can occur in cancer cells and that each cancer subtype has specific gene sets that are commonly susceptible to methylation and silencing. Glutathione S-transferase (GSTP1) is one example of a gene that is hypermethylated and inactivated in the majority of prostate cancers. We previously reported that hy...
متن کاملChromatin Modifications in Cancer Cells Hypermethylation through a Sequential Change in Transcriptional Gene Silencing Promotes DNA
It is well established that DNA hypermethylation of tumor suppressor and tumor-related genes can occur in cancer cells and that each cancer subtype has specific gene sets that are commonly susceptible to methylation and silencing. Glutathione S-transferase (GSTP1) is one example of a gene that is hypermethylated and inactivated in the majority of prostate cancers. We previously reported that hy...
متن کامل